Limes & Science Go Together

Landin_limes_web

In 1740, an English commodore led an ill-fated squadron of ships out to sea, prepared to circumnavigate the world (and attack some Spanish holdings along the way). Of over 1800 men starting the voyage, only 500 survived. The main killer was not war or weather, but  nutrition.

Just a few years after the flotilla returned, a naval doctor conducted one of the most famous experiments in the history of science. After a few months at sea, sailors on Dr. James Lind’s ship began exhibiting signs of scurvy. The doctor treated sick sailors with random supplements to their regular diet. Some shipmen received vinegar, or sea water, or barley water. They made no improvement. Sailors who were given citrus fruits, though, made quick and full recoveries.

Unfortunately, dogma and a small sample size caused many (including Dr. Lind) to underestimate the power of citrus. It wasn’t until the mid-1790s, as scurvy-free anecdotes and experiences grew, that ships rationed out citrus juice to prevent the disease. Enjoy some lemons, limes, or oranges in celebration of science!

Advertisements

Golden Protector

landin_marigold_web

I’ve always planted marigolds among my garden. I’ve heard these orange beauties have protective properties against herbivores. Is it true?

Hmm. Most researchers have found properties released from marigold roots inhibit bacteria, fungi, and/or nematodes (although this is extremely variable, depending upon the part of the plant used, how the marigolds are grown, and the pest species tested).

Most interesting sidetrack from my search… some research shows inhibition of Plasmodium, the microscopic organism that causes malaria (1).

Thanks to Charlie O’Shields of DoodleWash for the #WorldWatercolorMonth inspiration.

  1. Pankaj Gupta & Neeru Vasudeva (2010) In vitro antiplasmodial and antimicrobial potential of Tagetes erecta roots, Pharmaceutical Biology, 48:11, 1218-1223

Chirpless: Camel Crickets

camelcricket

Camel crickets (Ceuthophilus sp.) enjoy hanging out with humans. Perhaps you provide shelter to some in your garage or basement. These insects lack one major cricket trait though – chirping. Sound production should allow camel crickets to find each other in a dark cave or crawlspace. So, why no chirps?

A Chirp Mystery

One possible reason for the lack of chirps is a high risk of predation. In other species of crickets, those who call more or longer often end up as a snack. 1, 2 While I would hope camel crickets are relatively safe from bats and birds in your basement, spiders and mice are the crickets’ major predators. Both possess a solid sense of hearing.

Many crickets have parasites who also seek hosts by sound. Chirps attract female crickets, but they also draw mama parasites searching for a cozy spot to lay eggs. The developing parasitic larvae eat the cricket from the inside, exploding out of its body as they grow. Crickets in areas with these parasites quickly evolve “chirplessness.” Do camel crickets need to worry about these “Alien” chest-bursting scenes? While they do have a doozy of a parasite (an intestinal parasite that weakens the cricket enough to ensure predation), the infections are not related to sound production.

Perhaps camel crickets simply lost their physical ability to chirp. Most crickets produce sound by rubbing their wings together. Camel crickets, though, don’t have wings. In a basement, flying is probably not the most effective means of transportation.

The Scent of a Cricket

So, how do camel crickets find each other without sound? One word: pheromones.

Pheromones are used by many cricket species to indicate dominance, reproductive readiness, and location. Camel crickets release a scent that causes them to congregate. Researchers determined the pheromone is unrelated to reproduction since juveniles move toward the scent too. Nagel and Cade3 think the pheromone prevents camel crickets from drying out. We do know the antennae detect these pheromones. In a rather disturbing experiment, researchers found that camel crickets don’t aggregate when their antennae are lopped off.

 

  1. Baily, W.J. & Haythornthwaite, S. (1998). Risks of calling by the field cricket Teleogryllus oceanicus: potential predation by Australian long-eared bats. Journal of Zoology. 244(4) 505-513.
  2. Hedrick, A.V. (2000). Crickets with extravagant mating songs compensate for predation risk with extra caution. Proceedings of the Royal Society B 267(1444) 671-675.
  3. Nagel, M.G. & Cade, W.H. (1983). On the role of pheromones in aggregation formation in camel crickets, Ceuthophilus secretus (Orthopter: Gryllacrididae). Canadian Journal of Zoology 61(1).

Love and Loss: when a beloved pet dies

flea_byJMLandin

Goodbye to our adored cat, Flea (if you’ve followed this blog for a while, you may remember her from the post on the impacts cats have on bird populations). She was 19 years old and the master of everyone and everything in our home. She was an excellent overlord.

There is surprisingly little research on pet death and grief, but all the studies I read concluded that level of attachment paralleled amount of grief (duh). Most research also found similar results to McKutcheon and Flemming (2001), which indicated certain “risk factors” for humans. If you’re a young-ish female living alone, be prepared for a healthy dose of distress. The one factor that surprised me was whether the pet died of natural causes or euthanasia. Owners who euthanized their pets felt LESS grief.

I thought that the heavy responsibility of decisions associated with euthanasia would result in more guilt or ethical dilemmas, and therefore more grief. Pet owners who choose euthanasia are also, generally, much more attached to their pets. But this study hypothesizes that the support of veterinary staff, feeling of control, and acknowledgement that the pet will not recover may contribute to the differences.

Michael and I thank Flea’s end-of-life veterinarians for making the process easier on all of us. Sweet dreams, squishy Flea.

 

McKutcheon, KA and SJ Flemming. 2001. Grief resulting from euthanasia and natural death of companion animals. Journal of Death and Dying. 44(2) 169-188.

Hole-y Eggs

eastereggs

The hard shell of an egg may seem like a thin yet impenetrable fortress. At the microscopic level, though, it’s more like a colander. Thousands of pores allow oxygen into the egg (and carbon dioxide out) so the developing embryo won’t suffocate.

Those pores could potentially allow bacteria into the egg. In most birds, though, a thin layer of protein called the cuticle (or bloom) is added to the outside of the shell just before it’s laid. That layer blocks bacteria from moving inside the egg. Considering that eggs and waste products all pass through the same opening in birds, that cuticle can be extremely valuable. If you’re looking for the cuticle on eggs you bought at the grocery store, you won’t find it. Eggs here in the U.S. are washed before heading to market. The process is surprisingly complex since washing eggs improperly can cause bacteria to enter through those pores. It’s also the reason you’ll find eggs in the refrigerated section. In Europe, the cuticle stays on and eggs are sold at room temperature.

Our understanding of eggshell microstructure impacts Canada Goose populations. The process of “addling” by wildlife management professionals controls the population size of the birds. A thin layer of oil is rubbed on the outside of the eggshell, cutting off the oxygen supply for developing goose. The parents, who see a whole nest full of eggs, stop laying more. But only the un-oiled offspring will survive to hatch. [FYI: it is illegal to do this without a permit – see the Migratory Bird Treaty Act of 1918.]

Dinosaur eggs had pores too, and the structure and placement of those pores tell paleontologists a thing or two about how dinosaurs lived. For instance, some dinosaurs laid eggs in an exposed nest while some buried their eggs. Exposed eggs generally have fewer pores than the buried ones since gas exchange proves more difficult underground. Fewer pores are also found in eggs laid in dry environments to limit water loss. The Museum of Paleontology at Berkley has an excellent site with more information about dinosaur eggs.

Springtime Symbiosis: Trout Lilies and Superhero Ants

troutlily_webJML

Trout Lilies (Erythronium americanum) pop up from the forest floor, tiny harbingers of warm weather to come. This little lily is a spring ephemeral – a flowering plant that takes advantage of that tiny window of time between the last frozen days of winter and the heyday of spring, when the forest canopy selfishly soaks up all the sun’s rays. During those few weeks, the Trout Lily breaks through a ceiling of dead leaves, and slurps up sun and nutrients to store for the rest of the year in its underground bulb. If that’s not enough, that brief time is also used to flower, produce seeds, and make sure the next generation is safely on its way. No wonder this little plant needs a rest for the remainder of the year!

Given the time limitation, the Trout Lily can’t mess around with seed distribution. It has to be done right and done quickly. Call in the ants.

Many spring ephemerals, like the Trout Lily, produce an incentive for ants to take their seeds, move them a distance away, and plant them in a safe, nutrient-rich location. Each seed has a dollop of yumminess on its outer surface, like icing on a seed-shaped cupcake (officially the “icing” is called an elaiosome, a mixture of fats and protein). Ants carry the seeds back to their nests, feed the yumminess to their larvae, and dispose of the seeds in a waste area which just happens to be a wonderfully fertile location for young seedlings to begin their lives.

Not only do ants spread seeds to new locations and give them a fertile spot to grow, they also protect the seeds from predators like mice. Ruhren and Dudash (1) placed seeds in four scenarios on the forest floor: (a) accessible to both ants and mice, (b & c) accessible to either mice or ants, and (d) inaccessible to mice and ants. The researchers found that ants secured the seeds before the mice, saving the little plants’ lives. In locales where these superhero ants have vanished, spring ephemeral populations drop 70% (2).

Want to learn more about the superhero ants (a.k.a. winnow ants)? Visit School of Ants.

  1. Ruhren, S. and M. R. Dudash. 1996. Consequences of the Timing of seed release of Erythronium americanum (Liliaceae), a deciduous forest myrmecochore. American Journal of Botany 83(5):633-640.
  2. Rodriguez-Cabal, M., K.L. Stuble, B. Guenard, R.R. Dunn, N.J. Sanders. 2012. Disruption of ant-seed dispersal mutualisms by the invasive Asian needle and (Pachycondyla chinensis). Biol. Invasions 14:557-565.

Phoenecia: Land of Purple… Snail Dye

phoeneciashellmurex

“One of the costliest substances ever produced by man” was actually produced by sea snails (Hexaplex and Haustellum sp.). The Phoenicians (in modern-day Lebanon and Syria) harvested whelks and manufactured a reddish-purple dye called Tyrian Purple. Processing just one pound of the dye required millions of snails and cost almost $100,000 in today’s dollar. The color was prized by the Romans, who used the rare and expensive cloth to designate nobility. Romans named the land that produced the dye “Land of Purple,” or Phoenicia. (1)

As you can probably imagine, destroying millions of whelks for one pound of dye is pretty unsustainable. Over time, populations of the Mediterranean snail declined and were eventually extirpated from the region. The dye industry also collapsed. Even though other sources of purple dyes were found, they paled in comparison to Tyrian purple – literally, since Tyrian purple doesn’t fade in sunlight.

Today, many more species in the Mediterranean are facing extirpation. Almost every sea resource (like snails and other mollusks, turtles, crustaceans) in the area has plummeted to less than half its past population size. (2)

Nature can be an amazing provider, if respectfully and responsibly utilized. Populations of plants and animals produce more than could ever survive, so harvesting a certain number of individuals can actually help many species. But that “certain number” is important. Harvest too much, and the populations we rely upon decline. In harming other species, we ultimately harm our own – a lesson we could learn from the Phoenicians and the snails.

  1. McCord, C.P. 1969. The Lowly Whelk and the Lofty Royal Purple Dye. Archives of Environmental Health: An International Journal 18(3) 379-385.
  2. Lotze, H.K., M. Coll, and J.A. Dunne. 2011. Historical Changes in Marine Resources, Food-web Structure and Ecosystem Functioning in the Adriatic Sea, Mediterranean. Ecosystems. 14(2): 198-222.