Hole-y Eggs

eastereggs

The hard shell of an egg may seem like a thin yet impenetrable fortress. At the microscopic level, though, it’s more like a colander. Thousands of pores allow oxygen into the egg (and carbon dioxide out) so the developing embryo won’t suffocate.

Those pores could potentially allow bacteria into the egg. In most birds, though, a thin layer of protein called the cuticle (or bloom) is added to the outside of the shell just before it’s laid. That layer blocks bacteria from moving inside the egg. Considering that eggs and waste products all pass through the same opening in birds, that cuticle can be extremely valuable. If you’re looking for the cuticle on eggs you bought at the grocery store, you won’t find it. Eggs here in the U.S. are washed before heading to market. The process is surprisingly complex since washing eggs improperly can cause bacteria to enter through those pores. It’s also the reason you’ll find eggs in the refrigerated section. In Europe, the cuticle stays on and eggs are sold at room temperature.

Our understanding of eggshell microstructure impacts Canada Goose populations. The process of “addling” by wildlife management professionals controls the population size of the birds. A thin layer of oil is rubbed on the outside of the eggshell, cutting off the oxygen supply for developing goose. The parents, who see a whole nest full of eggs, stop laying more. But only the un-oiled offspring will survive to hatch. [FYI: it is illegal to do this without a permit – see the Migratory Bird Treaty Act of 1918.]

Dinosaur eggs had pores too, and the structure and placement of those pores tell paleontologists a thing or two about how dinosaurs lived. For instance, some dinosaurs laid eggs in an exposed nest while some buried their eggs. Exposed eggs generally have fewer pores than the buried ones since gas exchange proves more difficult underground. Fewer pores are also found in eggs laid in dry environments to limit water loss. The Museum of Paleontology at Berkley has an excellent site with more information about dinosaur eggs.

Winter’s “Toasted Marshmallow” Egg Case

MantisEggs

This “toasted marshmallow on a stick” is the egg case of a Chinese Praying Mantis (Tenodera sinensis), containing hundreds of developing youngsters. The eggs overwinter in this protective case until the spring’s warm weather triggers the eggs to hatch into tiny nymphs (mini-mantids). Nymphs grow into adults who enjoy their summer, snacking on any and all insects who cross their paths. In the fall, Praying Mantises mate, lay their eggs, and pass away.

A female mantid’s work may all be for naught if a tiny parasitic wasp interferes. The mantis lays her eggs in a frothy matrix that hardens around her offspring; but this mini wasp (sporting a ridiculously long ovipositor and rear legs that look like the mantids’ front legs) can lay her eggs inside the mantis case before it hardens. Since the wasps hatch first, they’ll use the mantis eggs as food.

Thanks to Mike Dunn (Roads End Naturalist) who recently presented a guide to winter wildlife – tracks, chew marks, and insect sign. Not only was I awed by his amazing photos, Mike also brought samples of all sorts of wintertime insect egg cases (including this one), cocoons, nests, tracks and galls.